
ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 178

ENHANCING SOC CAPABILITIES :ACTIVE AND PASSIVE ATTACK DETECTION

USING FIREWALL TECHNOLOGIES
R.Saritha1, Vasam Jahnavi2, Terala Sudhansh3, Sabavath Sai Kiran4,

Pashapu Siddartha Reddy5

1 Associate Professor, Dept. of CS, Sri Indu College of Engineering and Technology, Hyderabad,
 2 3 4 Research Student, Dept. of CS Sri Indu College of Engineering and Technology, Hyderabad

Abstract: This paper explores the optimization of
firewall parameters for attack detection using
machine learning techniques, focusing on
improving network security in dynamic
environments. Traditional firewall systems often
face limitations in detecting malicious traffic due to
static rule sets and high false positive rates,
particularly in real-world scenarios with evolving
attack patterns. To overcome these challenges, this
study applies neural networks with the rectified
linear unit activation function (ReLU), which
enables precise attack detection and real-time
firewall policy adjustments. The proposed 5-5-4
neural network model, tested using real-world
datasets, achieved an accuracy of 96.3%,
outperforming alternative configurations. The
analysis evaluated three scenarios: normal
conditions, active attacks, and post-policy
adjustment, confirming the effectiveness in
enhancing detection and mitigation capabilities.
The results highlight the potential of machine
learning, particularly neural networks, as a robust
tool to improve network security. This approach
enables future integration of IoT and real-time threat
monitoring.

Index Terms: DDoS attack, firewall, machine

learning, neural networks, Orange

1. INTRODUCTION

HE growing importance of security in

computer networks highlights the need for

robust monitoring of end devices, network

infrastructure, and firewall systems.

Firewalls play a vital role in this landscape

by controlling network traffic and regulating packet

transmission between zones (network areas), with

the ability to inspect packets when necessary.

Firewalls are generally classified into two main

types: edge firewalls, which manage Internet

access, and data centre firewalls, which secure

access to server infrastructures.

The manuscript was received on October 1st, 2024.

Dragan JEVTIĆ, Infrastructure of Serian Railway,

Nemanjina6, Belgrade, Serbia, dragan.jevtic@srbrail.rs,

Information Technology Studies, University of Criminal

Investigation and Police Studies, Cara Dušana 196, Belgrade,

Serbia

Petar ČISAR, Information Technology Studies, University of

Criminal Investigation and Police Studies, Cara Dušana 196,

Belgrade, Serbia, petar.cisar@kpu.edu.rs

While edge firewalls focus on controlling

external connections, data centre firewalls are

specifically designed to protect internal resources

within the data centre environment.

From an implementation perspective, firewalls

can be categorized as software-based, hardware-

based, or cloud-based solutions. Each type offers

the same level of protection but comes with

specific limitations and differences. Beyond their

implementation, it is crucial to consider the types

of firewall device in relation to their intended

functionality. The primary categories include

packet filtering firewalls, stateful inspection

firewalls, and proxy firewalls. In addition,

specialized solutions such as application firewalls,

web application firewalls, and virtual infrastructure

firewalls are available.

A firewall’s primary function is to filter network

traffic based on predefined policies. These policies

are shaped by organizational requirements,

network architecture, and configuration needs,

while also taking into account real-time network

conditions. Policies are defined using attributes

such as source and destination ports, network

address translation (NAT), bytes sent and

received, packets sent and received, and specific

actions to be taken [1].

This paper aims to demonstrate the optimization

of an Internet firewall using machine learning (ML).

For this purpose, a dataset collected from an

Internet firewall was analysed using the Orange

software package [2]. Orange was selected for its

extensive graphical components and algorithms,

making it a powerful tool for data analysis and

modelling.

Machine learning, along with neural networks, is

increasingly recognized as providing exceptional

results in this field. Neural networks, inspired by

biological nerve cells, are designed to meet the

computational needs of systems that use this

technology. These networks can be classified into

cellular, layered, and fully connected structures

[3].

Developing neural networks involves several

key stages. The process begins with the dataset,

followed by the design of the system, which

includes tasks such as dataset preprocessing,

defining the network topology, setting parameters,

and selecting activation functions. This stage

encompasses loading and filtering the dataset,

T

http://www.ijise.net/
mailto:dragan.jevtic@srbrail.rs
mailto:petar.cisar@kpu.edu.rs

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 179

specifying the type of network along with its

topology, link type, link order, and weight range. It

also involves defining the characteristics of

individual nodes and determining the system's

dynamics, including the initial weight scheme,

activation equations, calculations, and the

learning algorithm. After the design stage, the

system must be trained and finally tested. The test

dataset should be left aside. If we use a

multilayered perception of a neural network,

certain errors that occur during classification can

be reintroduced back into the network to modify

the network parameters.

Machine learning algorithms can be divided into

three categories: supervised learning,

unsupervised learning, and reinforcement

learning. Supervised learning, the most essential

form of machine learning, is characterized by data

consisting of pairs of descriptions of what is being

learned and what needs to be learned. On the

other hand, unsupervised learning is defined by

the absence of predefined labels or outcomes,

focusing instead on identifying patterns or

structures within the data. However, reinforcement

learning is employed when a sequence of actions

is required to find a solution to a problem. The

most widely used model is the supervised learning

model where the input variable is derived from an

input dataset, and the focus is on identifying

patterns within the data. Figure 1 illustrates the

main classification of machine learning algorithms.

Figure 1: Classification of machine learning algorithms [1].

Neural networks are a branch of machine

learning that is key to deep learning based on
artificial intelligence. Neural networks (NN) consist

of mutually densely connected processing
elements (neurons) organized according to

Figure 2: Artificial neuron [5].

Supervised learning defines the outputs with a

specific mapping of the input (x) and output (y).

Model creation begins by feeding a large amount

of data to the input, which starts the model's

training. A large amount of input data allows the

model to be more accurate. The high accuracy of

the model will enable us to have adequate

prediction of the output values by providing test

data to the model.

Each neuron has its input, which is connected

through synapses. The inputs, shown as xi where

i=1...n, can be new unprocessed input data or data

sent from another neuron. The strength of the

connection between neurons and individual input

data is not arbitrary but is precisely defined by

synaptic weights. These weights play a crucial role

in the transfer function, where the input multiplied

by its synaptic weight enters. The result of the

transfer function is then compared to a threshold

value, triggering an activation function that gives a

result of 1 or 0, the final output of the neuron [6].

The inputs received by neurons, are followed by

activation function. Activation functions introduce

non-linearity to the neural network, allowing it to

model more complex classifications. These

functions vary depending on the mathematical

formulas used, determining how the input data is

processed. The choice of activation function is

crucial in the development of neural networks, as

it directly affects the learning speed, as well as the

accuracy and performance of the network [5].

Figure 3 provides examples of activation

functions, including the sigmoid, rectified linear

unit activation function (ReLU), and the hyperbolic

tangent (tanh).

The sigmoid function is not zero-centred and

has an exponent calculation. The corresponding

formula for the function is found in [8]:

specific architectures. NN shows information

processing with learning and generalization
characteristics based on the training dataset. It is

1
Sigmoid(𝑥) =

1 + 𝑒–x

(1)

applied mainly to problems that require a clearly

defined function that connects the input and output

data [4].

This paper deals with neural networks with

supervised learning. The general principle of the

operation of neural networks is shown in Figure 2.

Another problem with this function arises during

the training of neural networks. The gradients,

which indicate how much a parameter should be

adjusted to reduce the error, gradually decrease

and eventually approach zero. This factor makes

the learning model difficult. Saturation of the

gradients is done by normalizing the data and

weights and using activation function that do not

lead to rapid saturation, such as ReLU. The

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 180

x

corresponding formula for the ReLU function is [9]: slope constant, which prevents ‘dead’ ReLU, and

accelerates learning by improving balance. The

()
1 𝑖𝑓 𝑥 > 0 (2) modified function, known as Leaky ReLU, is

ReLU 𝑥 = { }
0 𝑖𝑓 𝑥 < 0

The hyperbolic tangent is an odd, monotonically

increasing function. The function is centred at zero

and is between -1 and 1. The corresponding

formula for the function is:

shown in Figure 4a.

The Maxout function uses the maximum value

within a group of linear parts. Unlike ReLU, which

compares the value to zero, Maxout compares it

to the highest value within the candidate group.

The exponential linear unit (ELU) is another

Tanh(𝑥) =

sinh (𝑥)
=

cosh (𝑥)

𝑒x − 𝑒–x

𝑒x + 𝑒–x
(3)

variation of the ReLU function, offering improved

performance for values of x <0 (Figure 4b). It

shares similar properties with ReLU, but avoids

The hyperbolic tangent function also has a

problem with gradient saturation. When the input

the problem of dead ReLUs [3]. The

corresponding formula for the ELU function is [9]:

is greater than zero, the gradients will be positive

or negative, causing them to disappear.

a)

b)

ELU(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0

}
𝑎(𝑒 − 1) 𝑖𝑓 𝑥 < 0

a)

(4)

b)

Figure 4: Examples of activation function a) Leaky ReLU

and b) ELU [10].

The advantages and disadvantages of the

activation functions are given in Table 1.

Table 1. Advantages and disadvantages of activation

functions [6]

c)

Figure 3: Examples of activation functions are a) sigmoid,

b) Tanh, and c) ReLU [7].

The ReLU activation function is the most used

due to its simplicity in backward propagation and

calculation. However, it has a major drawback: if

the input is less than zero, the function outputs

zero. This problem is addressed by introducing a

gradient

linearity

difficulty

Sigmoid Tanh ReLU ELU

Reduction of
yes yes partial no

Limited non-
no no yes partial

Optimization
yes partial partial no

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 181

Lack of

adaptability

Computational

inefficiency

Sigmoid Tanh ReLU ELU

yes yes yes yes

yes yes no partial

forests, naive Bayes, and support vector

machines, were applied for the analysis. Among

these, the random forest algorithm demonstrated

the highest precision, achieving 99.6%, compared

to the Decision Tree (DT) algorithm, which had a

precision of 99.3%.

When comparing Maslan’s study, which used

Neural network learning is carried out using

algorithms known as backpropagation, which

calculates the gradients necessary for adjusting

the weight values in the network. Some of the

most used algorithms include Adam, Adagrad,

Nadam, Vanilla, and stochastic gradient descent

among others. In this paper, the authors will focus

on the Adam algorithm (Adaptive Moment

Estimation), which, not only calculates its learning

rate, but also incorporates momentum into the

update by acting on the first-order gradient [6].

2. RELATED WORKS

The analysis of datasets, particularly general

free datasets, and the use of appropriate

algorithms have mainly been the focus of

researchers. Along with various software

packages, Attack detection systems, are

commonly used to identify transmission

anomalies, as discussed in numerous studies [11-

23].

In his work, Maslan [11] focused on the concept

of detecting Distributed Denial-of-Service (DDoS)

attacks using machine learning techniques,

applied to a real WEB server. According to the

study, the reason for investigating this type of

attack is that DDoS attacks account for 79% of all

attacks in Malaysia. The techniques used in the

study include naive Bayes (NB), random forest

(RF), neural network (NN), support vector

machine (SVM), and k-nearest neighbour (k-NN).

The input dataset consists of typical attributes

such as the source and destination addresses,

packet size, packet type, and total number of

packets. The analysis revealed that the highest

accuracy was achieved using random forest and

NN algorithms, reaching 98.70% using both. In

comparison, other algorithms performed slightly

worse, with naive Bayes achieving 97.96%, SVM

98.41%, and k-NN 97.63%. The NN used in the

study consisted of two hidden layers in the 4-4

model configuration.

Studies such as Maslan [11] and Najafimehr

[12] have focused mainly on traditional machine

learning algorithms. For example, Najafimehr

used publicly available datasets, including

CICIDS2017 (DDoS subset) for training and

CICDDoS2019 for testing. Two open-source

datasets were used in his work: the CICIDS2017

dataset (DDoS subset) for training and

CICDDoS2019 for testing. Both datasets

contained 42 attributes each. Machine learning

algorithms, including decision trees, random

real data, with Najafimehr's work with open

datasets, it can be observed that real-world data

tend to produce lower precision. This is due to the

fact that, under real conditions, various factors

come into play, including the type of network, the

nature of the end node, and the specific type of

attack.

In his work, Stephan [13] tried to use neural

networks to set up a system for detecting attacks

on a web server. The neural networks that were

tested were defined with one hidden layer. When

testing with 5 nodes in the hidden layer, the results

obtained were 92.17% successful. Any deviation

from the value of 5 nodes in the hidden layer

dramatically degrades the pattern detection

performance.

Tivari [14] works with the other dataset, NSL-

KDD [15]. Dataset NSL-KDD is used for network

security testing and functions analysis. Using

classical machine learning models, Tivari came to

the following results. Comparing these studies for

precision, it could be concluded that the highest

accuracy could be obtained by using artificial

neural networks with a value of 99.4%. The next

group of models has a similar accuracy of 95%

and include the SVM, Passive Aggressive

Classifier, and Ridge Classifier, random forest with

94% and naive Bayes with 89%. It is also worth

mentioning the Decision Tree with 79% accuracy.

As mentioned so far, high values come with public

data sets. Using non-public datasets, values are

different.

Mahmood [16] took the example of private cloud

network attacks as another example of the use of

machine learning algorithms. Threats generated

against cloud services cannot be classified into a

separate group, but are an identical type of threat

against the end user. In this example, the following

algorithms were used: kNN, decision tree, SVM,

Random Forest, SGD, NN, Naive Bayes, logistic

regression, gradient boosting, and AdaBoost. The

traffic analysis was carried out continuously for 30

days. Based on a month-long analysis, results

were obtained that confirm that the neural network

algorithm does not lag behind other machine

learning algorithms. Regarding percentages, the

following accuracy results were obtained: neural

network 87.6%, random forest 86.9%, logistic

regression 87.7%, decision tree 87.7%, SVM

87.6%, etc. The data obtained confirm that the

results are below 99% for real datasets compared

to open datasets.

Lillmond [17], who analysed the deep neural

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 182

network, obtained better results in analysis. A

deep neural network refers to networks with

multiple hidden layers. The model used in this

analysis had an action output attribute with four

possible values: allow, deny, drop, and reset. The

allow value was 57.4%, drop 19.6%, and deny

22.9%. Analysis revealed that the deep neural

network achieved 94.49% precision for the test

model and 95.81% accuracy for the training

model.

Thi-Thu-Houng [18] conducted a test attack

using several models that included a small attack

within the dataset. The attack models were denial

of service (DoS), user-to-root (U2R), and remote-

to-local (R2L). In this experiment, Thi-Thu-Houng

used an open-source dataset, the KDD Cup [19].

The model had 80 hidden layers and 500 epochs.

The best results came from the Leaky ReLU

function, which achieved an accuracy of 0.97,

while the ReLU function yielded the lowest result

with an accuracy of 0.94.

Valentin [20] used 20,000 instances to evaluate

a dataset with actions in three states: allow, deny,

and reject. The training datasets were divided into

negative and positive examples in an 80:20 ratio.

The best performance in the neural network was

achieved with 13 hidden neurons.

Habibur [21] focused on analysing firewall traffic

using real data logs from a firewall, consisting of

approximately 67,000 logs. The paper discussed

a method involving an activation function and two

hidden layers with Models 3-4. The final prediction

was 0.75, with better results obtained from the

random forest and SVM models. The study did not

specify whether two separate datasets were used,

so it can be assumed that only one dataset was

analysed.

Abien [22] worked with the standard MNIST

dataset [23], which included 60,000 training

examples and 10,000 test cases. The paper

implemented two different classification functions:

softmax and ReLU. To evaluate the performance

of the ReLU model, several metrics were used,

including accuracy, standard deviation, recall,

precision, F1 score, and confusion matrix. Both

functions yielded similar results for these metrics,

ranging from 0.86 to 0.89, suggesting that Abien’s

future work may involve exploring deep-learning

variations of the ReLU model.

These studies demonstrate that neural network

algorithms can perform just as well as traditional

machine learning algorithms. The addition of

multiple layers allows for improved precision, a

topic that will also be explored in this paper.

3. MATERIALS AND METHODS

In this paper, working equipment was used for

the analysis to ensure that the results are in line

with practical scenarios, which may differ from

laboratory-based analyses. The Check Point

firewall served as the central firewall system for

the study. Firewalls are critical to preventing

threats and offer protection against advanced

attacks. The Check Point firewall provides several

key functions, including deep learning capabilities,

threat prevention (such as blocking zero-day DNS

and phishing attacks), and protection of Internet of

Things (IoT) devices. Furthermore, the firewall

supports 2.5Gbps threat prevention throughput,

which improves its overall performance in real-

world applications [24].

The robot system (BOT) used in this study was

based on open-source software from the

github.com portal [25]. Wireshark software [26]

was used to detect transmission anomalies. For

the machine learning analysis, the Orange

software package was utilized []. Various neural

network algorithms were applied, including

activation functions: identity, logistic, tanh, and

ReLU. The datasets used for the analysis were

gathered directly from the firewall system under

real working conditions.

3.1. Network Model for Attack Analysis and

Detection

A network, as shown in Figure 5, was used to

demonstrate how machine learning affects the

operation of the firewall system and how it

improves performance in terms of better detection

and blocking capabilities.

Figure 5: Layout of the analysis grid.

Figure 5 illustrates an attack on the internal

zone by two actors. One machine (Attacker2)

executes the attack directly, while the other control

(CCC) the attack using BOT functions, engaging

other users (BOTs) on the Internet to participate in

the attack. The entire attack is executed using two

different methods, ping flood and http flood. A BOT

function is a software program that automatically

performs repetitive and targeted tasks. BOT can

be used for some business tasks but also for

malicious purposes and could have a severe

impact on the local network. There are several

types of BOT attacks [27], which are as follows.

Credential stuffing is when attackers use stolen

login credentials to gain access to another

website. Bots circumvent existing built-in security

features in web application login forms by

attempting multiple simultaneous logins from

various device types and IP addresses.

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 183

Web/content scraping is when bots download

content from a website to use it in future attacks.

A website scraper bot sends a series of HTTP

GET requests, copies, and saves the information,

all in seconds.

DoS and DDoS attacks are carried out with

networks of Internet-connected machines, such as

computers or IoT devices. Once the network is

infected, attackers send remote instructions to

each bot to overload the server or network,

causing outages and downtime.

Brute force password cracking is an attack that

uses bots to attack and infiltrate protected

accounts by trying every possible password

combination or cracking encryption key to gain

unauthorized access to sensitive data.

Click fraud occurs when attackers target pay-

per-click ads to boost the search rankings of a

webpage through fake clicks.

This paper explores the use of bots to perform

DDoS attacks on a local network server. The

Python-based bot application includes server- and

client-side code. Server-client communication

(CCC and bots) typically occurs through port 5555,

with options for alternative ports. Clients can

launch two types of attack: http flood and ping

flood, both implemented in the client-side code

(see Listing 1). The server commands, outlined in

Listing 2, determine which attack function is used.

The attack source comprises the selected function

and the target IP address.

Listing 1: Client-side code that implements http flood and

ping flood attacks [23]

def run(self, n):
run = 0
#terminate = 0
if n[3]=="HTTPFLOOD":

while self._running and attackSet:
url_attack = 'http://'+n[0]+':'+n[1]+'/'
u =

urllib.request.urlopen(url_attack).read()
time.sleep(int(n[4]))

if n[3]=="PINGFLOOD":

while self._running:
if attackSet:

if run == 0:
url_attack = 'ping '+n[0]+' -i

0.0000001 -s 65000 > /dev/null 2>&1'
pro =

subprocess.Popen(url_attack,
stdout=subprocess.PIPE, shell=True,
preexec_fn=os.setsid)

run = 1 else:
if run == 1:

os.killpg(os.getpgid(pro.pid),
signal.SIGTERM)

run = 0
 break

Listing 2: Server commands controlling client attack

functions [23]

ATTACK_TARGET_HOST = "192.168.0.105"
ATTACK_TARGET_PORT = "3000"

Type of Attacks
#HTTPFLOOD - Floods the target system with

GET requests.
#PINGFLOOD - Floods the target system with

ICMP echo requests.

ATTACK_TYPE = "PINGFLOOD"

#Status codes that must be set from the list below.
HALT - Stop attacks immediately.
LAUNCH - To immediately start the attack.
HOLD - Wait for the command.
UPDATE - Update Client.

 ATTACK_CODE = "HALT"

In this paper, three datasets are defined for

analysis. The first dataset represents the normal

operation of the firewall system, capturing its

status during periods without active attacks on

specific groups or ports. This dataset serves as a

training set. The second dataset focuses on

detecting transmission anomalies during an active

attack, making it the test set. Comparing the

changes between these two datasets provides

information on the firewall policies. The third

dataset captures the data generated after the

adjusted firewall policies are implemented,

allowing the accuracy of anomaly detection and

the effectiveness of the updated policies to be

evaluated.

The dataset used for the analysis includes the

following attributes:

o destination: specifies the destination
IP address;

o interface direction: indicates incoming
or outgoing traffic;

o type: identifies whether the session is a

connection, log, or connection alert;

o source: displays the source IP address;
o product: categorizes the session as

either a threat or access;

o blade: specifies the firewall component
involved, such as antivirus, firewall, or
VPN;

o source port;

o destination port;

o protocol;

o action: determines whether the session
is accepted, dropped, detected, or
prevented.

The action attribute can take on several values,

including [1]:

o allow: allows communication between
the source and destination addresses.

o detect: monitors specific traffic that
bypasses initial detection.

o deny: blocks traffic between the source

and destination due to policy
restrictions and sends information to a
sender.

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 184

60000

50000

40000

30000

20000

10000

0

55808

8348

13

Accept Drop Prevent

60000

50000

40000

30000

52718

20000

10000

0

10144

24

Accept Drop Prevent

o drop: blocks traffic between the source

and destination without notifying the

sender. This is often preferred for

blocking potentially malicious traffic.
o prevent: stops unauthorised or

malicious traffic targeting the

destination address.

Figure 6 presents the network model

implemented in the Orange software package.

This model is designed for the application of

machine learning algorithms, which aligns with the

focus of this study. The model utilises three

datasets: no-attack, attack, and defence. The no-

attack dataset represents the network state when

no attack is occurring and is used to train the

model. This dataset contains approximately

54,500 log instances. Figure 7 illustrates the

numerical ratio of all three output states. The

attack dataset represents the state of the network

during an ongoing attack and is used to evaluate

the model. This dataset contains approximately

64,100 log instances. Figure 8 illustrates the

numerical distribution of all three output states.

The defence dataset represents the network state

after the firewall policy has been corrected. It

serves as an additional analysis to evaluate the

firewall system's operation, determining whether

the policy has been applied successfully and

whether the corrections have been effective. This

dataset contains approximately 62,800 log

instances. Figure 9 illustrates the numerical ratio

of all three output states.

Figure 6: Network model created in the Orange package.

50000

45519

40000

30000

20000

9208
10000

19

0

Accept Drop Prevent

Figure 7: Numerical ratio of output states in the no-attack

dataset.

Figure 8: Numerical ratio of output states in the attack data

set.

Figure 9: Numerical ratio of output states in the defence
dataset.

The initial analysis of the three datasets reveals

the behaviour of the allow exit function. Figure 10

shows the total number of all functions. The graph

highlights an increase in the volume of the packets

during the attack, followed by an increase in

discarded packets after the defence is applied.

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 185

12000

10000

8000

6000

4000

2000

0

NoAttack Attack Defence

Drop Prevent

the beta distribution for variable x and the shape

parameters α and β is given by the following

equation:

1
𝑓(𝑥, α, 𝛽) =

𝐵(α, 𝛽)
𝑥α–1(1 − 𝑥)β–1 (5)

Figure 10: Total packet counts showing increases during the

attack and defence phases.

Table 2 presents the percentage ratios for the

allow, drop, and prevent outputs, calculated

relative to the total number of output values. It

shows that as the percentage of allowed packets

increased from the no-attack dataset to the attack

dataset, meaning the firewall did not respond

initially. For smaller attacks, the firewall did not

register significant concern. However, after

adjusting the firewall policy, there was a reduction

in allowed packets and a corresponding increase

in rejected packets, as illustrated in Figure 11.

Table 2. Percentage ratios of allow, drop, and prevent outputs

calculated relative to the total number of output values

 allow/all drop/all prevent/all

no-attack 83% 16.8% 0.034%
attack 86.9% 13% 0.020%

 defence 83.8% 15.8% 0.038%

Figure 11: Change in allowed and rejected packets after

firewall policy adjustment (the value of the Prevent state is

quite low).

The first analysis of the neural network, focusing

on anomaly detection to predict whether an attack

has occurred, is performed using the distribution

unit in the Orange application. For this purpose,

data fitting was applied using the beta distribution.

The beta distribution is used to model the

behaviour of random variables constrained to finite

intervals across various fields. It is defined in the

interval [0, 1], with two positive parameters, alpha

(α) and beta (β), which serve as exponents of the

variable. The probability density function (PDF) of

A change in several characteristics is observed

in the TCP and UDP packets, as shown in Figure

12. The figures indicate values for the Generic

Routing Encapsulation (GRE) protocol, labelled as

value 47, and the Internet Control Message

Protocol (ICMP). However, the values for these

protocols are negligible. As shown in Figure 12, an

increase in activity is observed in the UDP ports,

suggesting additional network activity. To further

confirm this, Figure 13 shows the increase in the

number of UDP sessions, indicating a significant

increase in UDP traffic. Given that static NAT is

configured in the firewall system, the local IP

address 10.0.80.20 is assigned to the public IP

address (not shown for security reasons), where

specific attacks are made against the public IP

address. Figure 14 shows multiple connections

from a single public IP address to the local server

at 10.0.80.20.

A more detailed analysis of the number of

sessions and associated IP addresses was

conducted using Python programming. The

analysis covered a 10-minute period. The results

of this analysis, shown in Figures 15 and 16,

highlight the findings derived from the Python

scripts.

a)

60000

50000

40000

30000

20000

10000

0

NoAttack Attack Defence

Accept Drop Prevent

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 186

b)

Figure 12: Examples of TCP and UDP views a) before and

b) after the attack.

a)

b)

Figure 13: Displays of the number of received packets a)

before and b) after the attack.

Figure 14: Display of connections on the local server.

Figure 15: Display of the public IP address as destination

(attack victim).

Figure 16: Display of the public IP address as source
(attacker).

When examining the events on the incoming

firewall, it is observed that there is activity

originating from a specific public IP address

directed at the public IP address of the server

exposed to the Internet. The next step is to

analyze the server using various numerical

parameters. When Wireshark data are transmitted

during the ongoing attack, a notable similarity can

be observed in the number of packets between the

local IP address and the public IP address on the

Internet, as shown in Figure 17.

Detecting a high volume of sessions requires an

analysis of the use of the protocol to block

potential attacks on the firewall. Figure 18 reveals

that the analysis identified the ICMP protocol as

being used in a ping flood attack.

Figure 17: Number of sessions display between the server

and the attacker.

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 187

Figure 18: Display of the server-side protocols.

With two key variables, the type of attack and

the IP address from which the attack originates,

the firewall system can be configured to block the

attack. The process of setting the policy begins at

the firewall, where you choose to apply the policy

between the outside and inside zones. In the first

step, for the predefined Check Point firewall

solution, the following parameters must be set:

o policy name: This attribute does not

affect the policy's functionality.

However, when many policies follow the

"top-down" execution principle (where

the first named policy is executed first),

the policy name plays a significant role

in the execution order.

o source and destination addresses:

These fields directly impact the policy's

functionality. Specifically, sessions

between the specified IP addresses will

be blocked, as recorded by the firewall

device. Care must be taken to avoid

conflicts with IP addresses from other

policies, ensuring the proper functioning

of certain services.

o protocol settings: The final part of the

network. Each connection between neurons has

an associated weight, which is updated during

training through optimization algorithms. The

weight value is learned during this process and

plays an important role in the performance of the

network. Bias, on the other hand, is a parameter

that helps the model better understand the data. It

is added to the weighted sum of inputs in each

neuron, allowing the network to account for

discrepancies between the predicted and actual

outputs. Like weights, biases are also learned

during the training process and contribute to the

network's performance optimization.

Number of neurons: Neural networks can

consist of multiple layers, having different

structures, which influencing the model’s ability to

learn complex functions. Currently, there are no

definitive recommendations on the optimal

number or types of hidden layers needed to

achieve satisfactory results. To evaluate the data

presented in this study, several models with

varying numbers of neurons per layer were tested,

including models with two and three layers. The

accuracy results for the neural network, using the

training dataset, are presented in Table 3.

The best precision was achieved using a two-

layer neural network with a configuration of 5-3, as

demonstrated by Čisar in [1], thus confirming the

effectiveness of the two-layer model. Further

analysis with a three-layer model showed

improved precision compared to the two-layer

model, specifically with a 5-5-4 configuration for

our data. The structure of the neural network,

based on the number of neurons per layer, is

illustrated in Figure 19.

The parameters of the neural network are

influenced by the pre-defined algorithms. For the

dataset used in this study, an accuracy

comparison was performed with the proposed

algorithm. The results of this comparison are

presented in Table 4.

Table 3. Accuracy value related to the number of neurons

and layers

policy defines which protocols are Number of neurons and Accuracy
involved, whether they should be

blocked, and whether a log entry should

be created when the policy is triggered.

 layers

3-5 0.940

evaluate the effectiveness of the protection

mechanism it provides.

3.2 Attack Analysis through Machine Learning

Algorithms

In the following sections of the paper, the impact

of predefined datasets on the neural network will

be explored, which plays a crucial role in the

operation of this network.

5-3 0.957

5-4 0.949

5-4-3 0.956

5-5-3 0.960

5-5-4 0.963

6-5-4 0.954

4-5-4 0.946
4-5-5 0.960

Weights and Biases: Weights are parameters

that determine the strength of connections

between neurons in different layers of the neural

After explaining the firewall system, this work 4-5 0.945

will explore the concept of the neural network and 5-5 0.954

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 188

ƒ

Figure 19: Structure of the neural network with the number of neurons per layer (5-5-4 configuration).

Table 4 Accuracy comparison for the proposed activation
functions

taking prompt action on the firewall features, the

system returned largely to its initial state.

Classification Accuracy (CA): CA represents the

proportion of correctly classified examples related

to the total number of examples. The formula for

CA is as follows:

Accuracy= TP+TN
TP+TN+FP+FN

(7)

In Table 4 we have small deviations in the

values for the displayed functions. There are

deviations at the third decimal point, which

indicates that the final values in the further

examination will have small cuts in the values, for

the mentioned functions. Based on the results

obtained, the next phase of the analysis will focus

on the ReLU function and the 5-5-4 neural network

model. After defining the model, along with the

number of neurons, layers, and algorithms, further

network tests can be conducted to improve the

performance of the firewall solution. The following

characteristics were considered during this

process.

Area under the ROC (Receiver Operating

Characteristic) curve (AUC): The AUC represents

the area under the ROC curve, which assesses

the model's ability to distinguish between true

positives and false positives. Values range from 0

to 1, where a value of 1 indicates that the model

perfectly separates the specified classes. The

AUC is always a positive number and can be

calculated using the following equation:

where TP is true positive, TN is true negative,

FP is false positive, and FN is false negative.

Table 6 presents the CA values. When comparing

the test model to the training model, the CA drops

by 1.24%, as shown in Table 6. Similarly to the

AUC parameter, there is no return to the initial

values after intervention in the firewall system.

F-score (F1): The F-score measures predictive

performance, particularly when dealing with

unbalanced datasets. The results are presented in

Table 7, for the described model. A 1.56% drop

related to the training model is observed, but the

values return close to the nominal after the firewall

intervention.

Precision: Precision represents the proportion

of true positive events among the cases classified

as positive. The results are shown in Table 8.

Recall: Recall represents the proportion of true

positive events among all positive instances. The

results are provided in Table 9.

The data was recorded in three cycles. The first

cycle captured characteristics when there was no

attack on the system. The second cycle recorded

the state during the attack and was used for

training. The third cycle, confirmation, recorded

AUC=
1
𝑅𝑂𝐶 (𝑢)𝑑𝑢

0
(6) the firewall status after the necessary corrections

were made.

In this case, in Table 5, an example of weighting

values for all three cases is given. The average

values dropped by 4.61% compared to the training

data. However, after correcting for the firewall

solution, it almost returned to its initial values.

Figure 20 shows the ROC curve for the drop value

in the three datasets. In this figure, the graph

reveals a decrease in the area of the ROC curve

during a system attack. These changes ar work

and models coulde also reflected in Table 5. By

Table 5. AUC values across three dataset scenarios

Target Training Testing Conformation

Accept 0.977 0.930 0.975

Detect 1 1 1

Drop 0.977 0.932 0.977

Prevent 1 1 1

Average 0.977 0.932 0.977

Algorithm AUC CA F1 Precision

 NN

Identity

0.950

0.942

0.966

0.935

Logistic 0.965 0.964 0.979 0.947

Tanh 0.976 0.964 0.997 0.961

ReLU 0.977 0.964 0.979 0.963

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 189

a)

b)

c)

Figure 20: Values of the ROC curve for the drop function for

a) test, b) training, and c) confirmation mode.

Table 6. CA values for datasets

Table 7. F-score values showing the impact of firewall

intervention

4. COMPARING THE RESULTS FOR OTHER

FUNCTIONS

The results showed that by using the ReLU

function we can optimize the firewall device. Table

10 shows the results of other functions in neural

networks for the situation of an attack on the

system and the Accept functionality option.

Table 10. Values of Accept results for all functions

Target AUC CA F1 Precision Recall

ReLU 0.930 0.952 0.973 0.957 0.989

Tanh 0.930 0.946 0.969 0.955 0.983

Logistic 0.910 0.949 0.971 0.958 0.958

Identity 0.913 0.936 0.964 0.937 0.994

Suppose the focus is on the values of the CA

parameters, the parameter that shows the

correctly classified values. Then it could be

determined that the ReLU is better than Tanh,

Logistic and Identity quantified in percentage

differences of 0%, 0.6% and 1.7% (respectively).

In Figure 21, it can also be seen that ReLU is

mostly better for the other parameters, except for

the Recall parameter.

Noting the value of the Drop in Table 10, for all

functions, similar conclusions are reached, i.e.

that ReLU gives better results compared to the

Tanh, Logistic and Identity functions quantified in

percentage differences of 0.6%, 0.4% and 0.7%,

respectively. Defined deviations can also be seen

Detect 0 0 0

Drop 0.886 0.791 0.878

Prevent 1 0.839 1

Average 0.963 0.949 0.962

Table 8. Precision values for datasets

Target Training Testing Conformation

Accept 0.970 0.957 0.968

Detect 0 0 1

Drop 0.927 0.908 0.931

Prevent 1 0.722 1

Average 0.963 0.950 0.962

Table 9. Recall values for datasets

Target Training Testing Conformation

Accept 0.987 0.989 0.988

Detect 0 0 1

Drop 0.848 0.701 0.831

Prevent 1 1 1

Average 0.964 0.952 0.963

Target Training Testing Conformation

Accept 0.964 0.952 0.963

Detect 0.964 0.952 0.963

Drop 0.964 0.952 0.963

Prevent 0.964 0.952 0.963

Average 0.964 0.952 0.963

Target Training Testing Conformation

Accept 0.978 0.973 0.978

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 190

in Figure 22. Looking at the CA values in Table 11, we can

state that there was a drop in correctly classified

sessions by about 12%. This large value indicates

that for better detection of malicious sessions, it is

necessary to use a smaller data set to improve

accuracy.

Figure 21: Values of different parameters for activation

functions

Table 10. Values of Drop results for all functions

Target AUC CA F1 Precision Recall

ReLU 0.932 0.952 0.791 0.908 0.701

Tanh 0.929 0.946 0.768 0.862 0.693

Logistic 0.910 0.949 0.782 0.782 0.709

Identity 0.913 0.936 0.692 0.931 0.505

Figure 22: Values of defined deviations.

5. COMPARING THE RESULTS WITH A LARGER

DATASET

In the paper, the analysis was done with a small

number of samples, up to 54,500 defined

sessions. The values of some parameters are

quite high. Table 11 shows all parameters within

the ReLU function, but for a data set containing

1 000 000 sessions.

Table 11. Values for complete data set

Due to the very difficult option of comparing two

data sets whose values are quite different, the

comparison will be made only according to the

parameter CA, i.e. according to the parameter of

correctly classified examples.

6. CONCLUSION

This paper demonstrates the application of

neural networks with the ReLU activation function

aiming to optimize firewall policies for detection

and mitigation of network attacks. The proposed

5-5-4 model achieved the highest accuracy of

96.3%, surpassing two-layer architectures by

0.6% and the next-best three-layer architecture by

0.3%. The analysis, based on real working

environment datasets, confirmed that this

approach improves the accuracy of attack

detection and improves the effectiveness of

firewall policy adjustments, even in dynamic and

complex environments.

During the testing, a decrease in performance

metrics was observed: The area under the curve

(AUC) decreased by 4.61%, the classification

precision (CA) by 1.24%, the F1 score by 1.56%,

Precision by 1.3%, and recall by 1.2% compared

to the training values. After applying optimized

firewall policies, most parameters returned close

to their initial values, demonstrating the reliability

of the proposed model in real working scenarios.

The study used datasets consisting of

approximately 54,500 instances for training,

64,100 instances during active attacks, and

62,800 instances after firewall policy adjustments.

This ensures the results are based on realistic

conditions and it validates the practical

applicability. These findings are particularly

relevant in environments such as IoT systems,

where quick detection and prevention of attacks

are essential to maintain network security.

Although the results are encouraging, the study

is limited by the use of a single dataset and

software platform. Future research should focus

on evaluating the model's adaptability to larger

and more diverse datasets (IoT) and exploring its

integration into broader cybersecurity frameworks

to enhance scalability and applicability.

This study confirms the potential of machine

learning, particularly neural networks, as an

effective tool for improving network security. The

proposed approach provides a solid foundation for

further research and development aimed at

creating more adaptive and robust cybersecurity

solutions for increasingly complex and

interconnected systems.

1

0,5

0

 F1 Precision Recall

ReLU Tanh Logistic Identity

1,05

1

0,95

0,9

0,85

ReLU Tanh Logistic Identity

Target AUC CA F1 Precision Recall

Accept 0.809 0.837 0.896 0.820 0.987

Detect 1.000 0.837 0.782 0.642 1.000

Drop 0.998 0.837 0.997 1.000 0.993

Prevent 0.967 0.837 0.000 0.000 0.000

Reject 0.753 0.837 0.357 0.834 0.227

http://www.ijise.net/

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Page | 191

REFERENCES
[1] Čisar, P., Popović, B., Kuk, K., Čisar, S., Vuković, I.,

“Machine Learning Aspects of Internet Firewall Data,”
Springer, 10.1007/978-94-024-2174-3_4. 2022.

[2] Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar,
T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M.,
Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar,
J., Zitnik, M., Zupan, B., “Orange: Data Mining Toolbox
in Python,” Journal of Machine Learning Research, vol.
14, no. Aug, pp. 2349–2353. 2013.

[3] Petrović, M., “Osnovi veštačkih neuronskih mreža i
značaj njihove primene,” Zbornik radova Građevinskog
fakulteta, Subotica, no. 20, pp. 47–55. 2011.

[4] Knežević, S., Mileta, Ž., Žarković, “Predviđanje
proizvodnje termoelektrane pomoću neuralnih mreža,”
Energija, ekonomija, ekologija, vol. XXV, pp. 38–41.
2023. https://doi.org/10.46793/EEE23-4.38K

[5] Kramberger, T., Nozica, B., Dodig, I., Cafuta, D.,
“Pregled tehnologija u neuronskim mrežama,”
10.19279/TVZ.PD.2019-7-1-04. 2019.

[6] Nikolić, M., Zečević, A., “Machine learning,” Faculty of
Mathematics, Belgrade, Serbia, 2019.

[7] Coraline Ada Ehmke, “How Do Neural Networks Make
Decisions: A Look at Activation Functions,” Accessed:
Nov. 23, 2024, Available:
https://www.goglides.dev/bkpandey/how-do-neural-
networks-make-decisions-a-look-at-activation-functions-
141e

[8] Dubey, S.R., Singh, S.K., Chaudhuri, B.B., “Activation
functions in deep learning: A comprehensive survey and
benchmark,” Neurocomputing, vol. 503, pp. 92–108.
2022. https://doi.org/10.1016/j.neucom.2022.06.111

[9] Bai, Y., “RELU-Function and Derived Function Review,”
SHS Web of Conferences, vol. 144, 02006. 2022.
https://doi.org/10.1051/shsconf/202214402006

[10] PyTorch Contributors, Accessed: Nov. 23, 2024,
Available:
https://pytorch.org/docs/stable/generated/torch.nn.ELU.h
tml

[11] Maslan, A., Mohamad, K., Mohd Foozy, C.F., “Feature
selection for DDoS detection using classification
machine learning techniques,” IAES International
Journal of Artificial Intelligence (IJ-AI), vol. 9, pp. 137–
145. 2020. https://doi.org/10.11591/ijai.v9.i1.pp137-145

[12] Najafimehr, M., Zarifzadeh, S., Mostafavi, S., “A hybrid
machine learning approach for detecting unprecedented
DDoS attacks,” J Supercomput., vol. 78, no. 6, pp.
8106–8136. 2022. https://doi.org/10.1007/s11227-021-
04253-x

[13] Stephan J, Sahab M., Abbas M., “Neural network
Approach to Web Application protections”, International
Journal of Information and Education Technology, Vol. 5,
No. 2, February 2015

[14] Tiwari S., Kumar N., Joshi K., Kumar S., “Enhancing
Cyber Security: A Comparative Study of Artificial Neural
Networks and Machine Learning for Improved Network
Vulnerability Detections “, Advanced technologies for
realizing sustainable development goals 5G, AI. Big
Data, Block Chain and Industry 2.0 applications,
Bentham Books, Singapore, 2024.

[15] Ghulam Mohi-ud-din, December 29, 2018, "NSL-KDD",
IEEE Dataport, doi: https://dx.doi.org/10.21227/425a-
3e55.

[16] Mahmood, S., Hasan, R., Yahaya, A., Hussain, S.,
Hussain, M., “Evaluation of the Omni-Secure Firewall
System in a Private Cloud Environment,” Knowledge,
vol. 4. 2024. https://doi.org/10.3390/knowledge4020008

[17] Lillmond, C., Suddul, G., “A Deep Neural Network
Approach for Analysis of Firewall Log Data,”
10.13140/RG.2.2.27458.04808. 2021.

[18] Le, T.-T.-H., Kim, J., Kim, H., “Analyzing Effective of

Activation Functions on Recurrent Network for Intrusion

Detection,” JMIS, vol. 3, no. 3, pp. 91–99. 2016.
https://doi.org/10.9717/JMIS.2016.3.3.91

[19] Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.,
“KDD Cup 1999 Data,” UCI Machine Learning
Repository, Accessed: Nov. 23, 2024, Available:
https://doi.org/10.24432/C51C7N

[20] Valentin, K., Maly, M., “Network firewall using artificial
neural networks,” Computing and Informatics, vol. 32,
pp. 1312–1327. 2013.

[21] Rahman, M.H., Islam, T., Rana, M.M., Tasnim, R.,
Mona, T., Sakib, M., “Machine Learning Approach on
Multiclass Classification of Internet Firewall Log Files,”
10.48550/arXiv.2306.07997. 2023.

[22] Agarap, A.F., “Deep Learning using Rectified Linear
Units (ReLU),” 10.48550/arXiv.1803.08375. 2018.

[23] LeCun, Y., Cortes, C., Burges, C., “MNIST Handwritten
Digit Database,” AT & T Labs, vol. 2, Accessed: Nov. 23,
2024, Available: http://yann.lecun.com/exdb/mnist

[24] Checkpoint, Accessed: Nov. 23, 2024, Available:
https://www.checkpoint.com/

[25] Shankar Narayana Damodaran, Accessed: Nov. 23,
2024, Available: https://github.com/skavngr/netbot

[26] “Wireshark: Network Analyzer,” Accessed: Nov. 23,
2024, Available: https://www.wireshark.org

[27] Cloudflare, Accessed: Nov. 23, 2024, Available:
https://www.cloudflare.com/learning/bots/what-is-a-bot-
attack

Dragan Jevtić, Infrastructure of Serbian Railway, Belgrade, Serbia
(e-mail: dragan.jevtic@srbrail.rs)
Petar Čisar, University of Criminal Investigation and Police Studies,
Belgrade, Serbia, (e-mail: petar.cisar@kpu.edu.rs), 0000-0002-8129-
288X,

John von Neumann University, GAMF Faculty of Engineering and
Computer Science, Kecskemét, Hungary (e-
mail: csiszar.peter@nje.hu)
Kristijan Kuk, University of Criminal Investigation and Police

Studies, Belgrade, Serbia, (e-mail: kristijan.kuk@kpu.edu.rs), 0000-
0001-8910-791X
Vladica Stojanović, University of Criminal Investigation and Police
Studies, Belgrade, Serbia, (e-mail: vladica.stojadinovic@kpu.edu.rs)
0000-0002-3819-4387

Dragan Jevtić is a PhD student at the
University of Criminal Investigation and Policy
Studies. Currently working as Project Manager
in the IT Department, Infrastructure of Serbian
Railways. His research is mainly focused on
using machine learning in various situations in
railway environments, ranging from detecting
attacks (from the Internet and the intranet) by
rapidly analysing large amounts of data to

investigating anomalies in transmission or attack itself.

Petar Čisar graduated from the University of
Belgrade School of Electrical Engineering
and earned a PhD in Information Sciences
from University of Novi Sad. He is a full
professor at the University of Criminal
Investigation and Police Studies, Belgrade,
and an associate professor at John von

Neumann University, Kecskemét. A member of the
International Society for the Implementation of Fuzzy Theory in
Budapest and an external member of the Hungarian Academy
of Sciences and Arts, he has authored over 150 scientific
papers, with 400+ independent citations. His research focuses
on computer and telecommunication networks, network
security, digital forensics, and AI implementations.

http://www.ijise.net/
http://www.goglides.dev/bkpandey/how-do-neural-
http://yann.lecun.com/exdb/mnist
http://www.checkpoint.com/
http://www.wireshark.org/
http://www.cloudflare.com/learning/bots/what-is-a-bot-
mailto:dragan.jevtic@srbrail.rs
mailto:petar.cisar@kpu.edu.rs
mailto:csiszar.peter@nje.hu
mailto:kristijan.kuk@kpu.edu.rs
mailto:vladica.stojadinovic@kpu.edu.rs

ISSN: 1934--9955 www.ijise.net
Vol-20 Issue-01 Mar
2025

Kristijan Kuk earned his M.Sc. from the
Technical Faculty in Zrenjanin, University of
Novi Sad, and his PhD in Informatics and
Computing Science from the Faculty of
Electronic Engineering, University of Niš. He
is a full professor at the Faculty of Computer
Science and Information Technology,
University of Criminal Investigation and
Police Studies in Belgrade. He has authored

over 15 papers that have been published in scientific journals
from SCI/E lists; two papers have been published as a chapter
for Springer and two chapters for Elsevier books. His research
interests include intelligent agents, data mining techniques,
and secure software development.

Vladica Stojanović is a full professor at the
University of Criminal Investigation and
Police Studies in Belgrade. He graduated
from the Department of Mathematics at the
Faculty of Philosophy in Niš and completed
his master’s degree in 2004. He received his
PhD from the Faculty of Sciences in
Kosovska Mitrovica. His research focuses on
statistics, probability theory, time series

analysis, data analysis, and computational physics. In 2023, he
was awarded the Outstanding Reviewer Award for the
Mathematics journal.

http://www.ijise.net/

