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Abstract: This paper explores the optimization of 
firewall parameters for attack detection using 
machine learning techniques, focusing on 
improving network security in dynamic 
environments. Traditional firewall systems often 
face limitations in detecting malicious traffic due to 
static rule sets and high false positive rates, 
particularly in real-world scenarios with evolving 
attack patterns. To overcome these challenges, this 
study applies neural networks with the rectified 
linear unit activation function (ReLU), which 
enables precise attack detection and real-time 
firewall policy adjustments. The proposed 5-5-4 
neural network model, tested using real-world 
datasets, achieved an accuracy of 96.3%, 
outperforming alternative configurations. The 
analysis evaluated three scenarios: normal 
conditions, active attacks, and post-policy 
adjustment, confirming the effectiveness in 
enhancing detection and mitigation capabilities. 
The results highlight the potential of machine 
learning, particularly neural networks, as a robust 
tool to improve network security. This approach 
enables future integration of IoT and real-time threat 
monitoring. 

 
Index Terms: DDoS attack, firewall, machine 

learning, neural networks, Orange 

 

1. INTRODUCTION 

HE growing importance of security in 

computer networks highlights the need for 

robust monitoring of end devices, network 

infrastructure,  and  firewall  systems. 

Firewalls play a vital role in this landscape 

by controlling network traffic and regulating packet 

transmission between zones (network areas), with 

the ability to inspect packets when necessary. 

Firewalls are generally classified into two main 

types: edge firewalls, which manage Internet 

access, and data centre firewalls, which secure 

access to server infrastructures. 
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While edge firewalls focus on controlling 

external connections, data centre firewalls are 

specifically designed to protect internal resources 

within the data centre environment. 

From an implementation perspective, firewalls 

can be categorized as software-based, hardware- 

based, or cloud-based solutions. Each type offers 

the same level of protection but comes with 

specific limitations and differences. Beyond their 

implementation, it is crucial to consider the types 

of firewall device in relation to their intended 

functionality. The primary categories include 

packet filtering firewalls, stateful inspection 

firewalls, and proxy firewalls. In addition, 

specialized solutions such as application firewalls, 

web application firewalls, and virtual infrastructure 

firewalls are available. 

A firewall’s primary function is to filter network 

traffic based on predefined policies. These policies 

are shaped by organizational requirements, 

network architecture, and configuration needs, 

while also taking into account real-time network 

conditions. Policies are defined using attributes 

such as source and destination ports, network 

address translation (NAT), bytes sent and 

received, packets sent and received, and specific 

actions to be taken [1]. 

This paper aims to demonstrate the optimization 

of an Internet firewall using machine learning (ML). 

For this purpose, a dataset collected from an 

Internet firewall was analysed using the Orange 

software package [2]. Orange was selected for its 

extensive graphical components and algorithms, 

making it a powerful tool for data analysis and 

modelling. 

Machine learning, along with neural networks, is 

increasingly recognized as providing exceptional 

results in this field. Neural networks, inspired by 

biological nerve cells, are designed to meet the 

computational needs of systems that use this 

technology. These networks can be classified into 

cellular, layered, and fully connected structures 

[3]. 

Developing neural networks involves several 

key stages. The process begins with the dataset, 

followed by the design of the system, which 

includes tasks such as dataset preprocessing, 

defining the network topology, setting parameters, 

and selecting activation functions. This stage 

encompasses loading and filtering the dataset, 
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specifying the type of network along with its 

topology, link type, link order, and weight range. It 

also involves defining the characteristics of 

individual nodes and determining the system's 

dynamics, including the initial weight scheme, 

activation equations, calculations, and the 

learning algorithm. After the design stage, the 

system must be trained and finally tested. The test 

dataset should be left aside. If we use a 

multilayered perception of a neural network, 

certain errors that occur during classification can 

be reintroduced back into the network to modify 

the network parameters. 

Machine learning algorithms can be divided into 

three categories: supervised learning, 

unsupervised learning, and reinforcement 

learning. Supervised learning, the most essential 

form of machine learning, is characterized by data 

consisting of pairs of descriptions of what is being 

learned and what needs to be learned. On the 

other hand, unsupervised learning is defined by 

the absence of predefined labels or outcomes, 

focusing instead on identifying patterns or 

structures within the data. However, reinforcement 

learning is employed when a sequence of actions 

is required to find a solution to a problem. The 

most widely used model is the supervised learning 

model where the input variable is derived from an 

input dataset, and the focus is on identifying 

patterns within the data. Figure 1 illustrates the 

main classification of machine learning algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Classification of machine learning algorithms [1]. 

Neural networks are a branch of machine 

learning that is key to deep learning based on 
artificial intelligence. Neural networks (NN) consist 

of mutually densely connected processing 
elements  (neurons)  organized  according  to 

 

 

Figure 2: Artificial neuron [5]. 

Supervised learning defines the outputs with a 

specific mapping of the input (x) and output (y). 

Model creation begins by feeding a large amount 

of data to the input, which starts the model's 

training. A large amount of input data allows the 

model to be more accurate. The high accuracy of 

the model will enable us to have adequate 

prediction of the output values by providing test 

data to the model. 

Each neuron has its input, which is connected 

through synapses. The inputs, shown as xi where 

i=1...n, can be new unprocessed input data or data 

sent from another neuron. The strength of the 

connection between neurons and individual input 

data is not arbitrary but is precisely defined by 

synaptic weights. These weights play a crucial role 

in the transfer function, where the input multiplied 

by its synaptic weight enters. The result of the 

transfer function is then compared to a threshold 

value, triggering an activation function that gives a 

result of 1 or 0, the final output of the neuron [6]. 

The inputs received by neurons, are followed by 

activation function. Activation functions introduce 

non-linearity to the neural network, allowing it to 

model more complex classifications. These 

functions vary depending on the mathematical 

formulas used, determining how the input data is 

processed. The choice of activation function is 

crucial in the development of neural networks, as 

it directly affects the learning speed, as well as the 

accuracy and performance of the network [5]. 

Figure 3 provides examples of activation 

functions, including the sigmoid, rectified linear 

unit activation function (ReLU), and the hyperbolic 

tangent (tanh). 

The sigmoid function is not zero-centred and 

has an exponent calculation. The corresponding 

formula for the function is found in [8]: 

specific architectures. NN shows information 

processing with learning and generalization 
characteristics based on the training dataset. It is 

1 
Sigmoid(𝑥) = 

1 + 𝑒–x 

(1) 

applied mainly to problems that require a clearly 

defined function that connects the input and output 

data [4]. 

This paper deals with neural networks with 

supervised learning. The general principle of the 

operation of neural networks is shown in Figure 2. 

Another problem with this function arises during 

the training of neural networks. The gradients, 

which indicate how much a parameter should be 

adjusted to reduce the error, gradually decrease 

and eventually approach zero. This factor makes 

the learning model difficult. Saturation of the 

gradients is done by normalizing the data and 

weights and using activation function that do not 

lead to rapid saturation, such as ReLU. The 
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x 

corresponding formula for the ReLU function is [9]: slope constant, which prevents ‘dead’ ReLU, and 

accelerates learning by improving balance. The 

( ) 
1 𝑖𝑓 𝑥 > 0 (2) modified function, known as Leaky ReLU, is 

ReLU 𝑥 = { } 
0 𝑖𝑓 𝑥 < 0 

 

The hyperbolic tangent is an odd, monotonically 

increasing function. The function is centred at zero 

and is between -1 and 1. The corresponding 

formula for the function is: 

shown in Figure 4a. 

The Maxout function uses the maximum value 

within a group of linear parts. Unlike ReLU, which 

compares the value to zero, Maxout compares it 

to the highest value within the candidate group. 

The exponential linear unit (ELU) is another 

 
Tanh(𝑥) = 

sinh (𝑥) 
= 

cosh (𝑥) 

𝑒x − 𝑒–x 
 

 

𝑒x + 𝑒–x 
(3) 

variation of the ReLU function, offering improved 

performance for values of x <0 (Figure 4b). It 

shares similar properties with ReLU, but avoids 

The hyperbolic tangent function also has a 

problem with gradient saturation. When the input 

the problem of dead ReLUs [3]. The 

corresponding formula for the ELU function is [9]: 

is greater than zero, the gradients will be positive 

or negative, causing them to disappear. 
 

a) 

 
b) 

ELU(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0

} 
𝑎(𝑒 − 1) 𝑖𝑓 𝑥 < 0 

 

 
 

 

 

 
 

 

 

 
 

 
a) 

(4) 

 

 
b) 

Figure 4: Examples of activation function a) Leaky ReLU 

and b) ELU [10]. 

The advantages and disadvantages of the 

activation functions are given in Table 1. 

 
Table 1. Advantages and disadvantages of activation 

functions [6] 

 

c) 

Figure 3: Examples of activation functions are a) sigmoid, 

b) Tanh, and c) ReLU [7]. 

The ReLU activation function is the most used 

due to its simplicity in backward propagation and 

calculation. However, it has a major drawback: if 

the input is less than zero, the function outputs 

zero. This problem is addressed by introducing a 

 

 
gradient 

 

 
linearity 

 

 
difficulty 

Sigmoid Tanh ReLU ELU 

Reduction of 
yes yes partial no 

    

Limited non- 
no no yes partial 

Optimization 
yes partial partial no 
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Lack of 

adaptability 

 
Computational 

inefficiency 

Sigmoid Tanh ReLU ELU 

yes  yes  yes  yes 

yes yes no partial 

forests, naive Bayes, and support vector 

machines, were applied for the analysis. Among 

these, the random forest algorithm demonstrated 

the highest precision, achieving 99.6%, compared 

to the Decision Tree (DT) algorithm, which had a 

precision of 99.3%. 

When comparing Maslan’s study, which used 

Neural network learning is carried out using 

algorithms known as backpropagation, which 

calculates the gradients necessary for adjusting 

the weight values in the network. Some of the 

most used algorithms include Adam, Adagrad, 

Nadam, Vanilla, and stochastic gradient descent 

among others. In this paper, the authors will focus 

on the Adam algorithm (Adaptive Moment 

Estimation), which, not only calculates its learning 

rate, but also incorporates momentum into the 

update by acting on the first-order gradient [6]. 

 
2. RELATED WORKS 

The analysis of datasets, particularly general 

free datasets, and the use of appropriate 

algorithms have mainly been the focus of 

researchers. Along with various software 

packages, Attack detection systems, are 

commonly used to identify transmission 

anomalies, as discussed in numerous studies [11- 

23]. 

In his work, Maslan [11] focused on the concept 

of detecting Distributed Denial-of-Service (DDoS) 

attacks using machine learning techniques, 

applied to a real WEB server. According to the 

study, the reason for investigating this type of 

attack is that DDoS attacks account for 79% of all 

attacks in Malaysia. The techniques used in the 

study include naive Bayes (NB), random forest 

(RF), neural network (NN), support vector 

machine (SVM), and k-nearest neighbour (k-NN). 

The input dataset consists of typical attributes 

such as the source and destination addresses, 

packet size, packet type, and total number of 

packets. The analysis revealed that the highest 

accuracy was achieved using random forest and 

NN algorithms, reaching 98.70% using both. In 

comparison, other algorithms performed slightly 

worse, with naive Bayes achieving 97.96%, SVM 

98.41%, and k-NN 97.63%. The NN used in the 

study consisted of two hidden layers in the 4-4 

model configuration. 

Studies such as Maslan [11] and Najafimehr 

[12] have focused mainly on traditional machine 

learning algorithms. For example, Najafimehr 

used publicly available datasets, including 

CICIDS2017 (DDoS subset) for training and 

CICDDoS2019 for testing. Two open-source 

datasets were used in his work: the CICIDS2017 

dataset (DDoS subset) for training and 

CICDDoS2019 for testing. Both datasets 

contained 42 attributes each. Machine learning 

algorithms,  including  decision  trees,  random 

real data, with Najafimehr's work with open 

datasets, it can be observed that real-world data 

tend to produce lower precision. This is due to the 

fact that, under real conditions, various factors 

come into play, including the type of network, the 

nature of the end node, and the specific type of 

attack. 

In his work, Stephan [13] tried to use neural 

networks to set up a system for detecting attacks 

on a web server. The neural networks that were 

tested were defined with one hidden layer. When 

testing with 5 nodes in the hidden layer, the results 

obtained were 92.17% successful. Any deviation 

from the value of 5 nodes in the hidden layer 

dramatically degrades the pattern detection 

performance. 

Tivari [14] works with the other dataset, NSL- 

KDD [15]. Dataset NSL-KDD is used for network 

security testing and functions analysis. Using 

classical machine learning models, Tivari came to 

the following results. Comparing these studies for 

precision, it could be concluded that the highest 

accuracy could be obtained by using artificial 

neural networks with a value of 99.4%. The next 

group of models has a similar accuracy of 95% 

and include the SVM, Passive Aggressive 

Classifier, and Ridge Classifier, random forest with 

94% and naive Bayes with 89%. It is also worth 

mentioning the Decision Tree with 79% accuracy. 

As mentioned so far, high values come with public 

data sets. Using non-public datasets, values are 

different. 

 
Mahmood [16] took the example of private cloud 

network attacks as another example of the use of 

machine learning algorithms. Threats generated 

against cloud services cannot be classified into a 

separate group, but are an identical type of threat 

against the end user. In this example, the following 

algorithms were used: kNN, decision tree, SVM, 

Random Forest, SGD, NN, Naive Bayes, logistic 

regression, gradient boosting, and AdaBoost. The 

traffic analysis was carried out continuously for 30 

days. Based on a month-long analysis, results 

were obtained that confirm that the neural network 

algorithm does not lag behind other machine 

learning algorithms. Regarding percentages, the 

following accuracy results were obtained: neural 

network 87.6%, random forest 86.9%, logistic 

regression 87.7%, decision tree 87.7%, SVM 

87.6%, etc. The data obtained confirm that the 

results are below 99% for real datasets compared 

to open datasets. 

Lillmond [17], who analysed the deep neural 
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network, obtained better results in analysis. A 

deep neural network refers to networks with 

multiple hidden layers. The model used in this 

analysis had an action output attribute with four 

possible values: allow, deny, drop, and reset. The 

allow value was 57.4%, drop 19.6%, and deny 

22.9%. Analysis revealed that the deep neural 

network achieved 94.49% precision for the test 

model and 95.81% accuracy for the training 

model. 

Thi-Thu-Houng [18] conducted a test attack 

using several models that included a small attack 

within the dataset. The attack models were denial 

of service (DoS), user-to-root (U2R), and remote- 

to-local (R2L). In this experiment, Thi-Thu-Houng 

used an open-source dataset, the KDD Cup [19]. 

The model had 80 hidden layers and 500 epochs. 

The best results came from the Leaky ReLU 

function, which achieved an accuracy of 0.97, 

while the ReLU function yielded the lowest result 

with an accuracy of 0.94. 

Valentin [20] used 20,000 instances to evaluate 

a dataset with actions in three states: allow, deny, 

and reject. The training datasets were divided into 

negative and positive examples in an 80:20 ratio. 

The best performance in the neural network was 

achieved with 13 hidden neurons. 

Habibur [21] focused on analysing firewall traffic 

using real data logs from a firewall, consisting of 

approximately 67,000 logs. The paper discussed 

a method involving an activation function and two 

hidden layers with Models 3-4. The final prediction 

was 0.75, with better results obtained from the 

random forest and SVM models. The study did not 

specify whether two separate datasets were used, 

so it can be assumed that only one dataset was 

analysed. 

Abien [22] worked with the standard MNIST 

dataset [23], which included 60,000 training 

examples and 10,000 test cases. The paper 

implemented two different classification functions: 

softmax and ReLU. To evaluate the performance 

of the ReLU model, several metrics were used, 

including accuracy, standard deviation, recall, 

precision, F1 score, and confusion matrix. Both 

functions yielded similar results for these metrics, 

ranging from 0.86 to 0.89, suggesting that Abien’s 

future work may involve exploring deep-learning 

variations of the ReLU model. 

These studies demonstrate that neural network 

algorithms can perform just as well as traditional 

machine learning algorithms. The addition of 

multiple layers allows for improved precision, a 

topic that will also be explored in this paper. 

 
3. MATERIALS AND METHODS 

In this paper, working equipment was used for 

the analysis to ensure that the results are in line 

with practical scenarios, which may differ from 

laboratory-based analyses. The Check Point 

firewall served as the central firewall system for 

the study. Firewalls are critical to preventing 

threats and offer protection against advanced 

attacks. The Check Point firewall provides several 

key functions, including deep learning capabilities, 

threat prevention (such as blocking zero-day DNS 

and phishing attacks), and protection of Internet of 

Things (IoT) devices. Furthermore, the firewall 

supports 2.5Gbps threat prevention throughput, 

which improves its overall performance in real- 

world applications [24]. 

The robot system (BOT) used in this study was 

based on open-source software from the 

github.com portal [25]. Wireshark software [26] 

was used to detect transmission anomalies. For 

the machine learning analysis, the Orange 

software package was utilized []. Various neural 

network algorithms were applied, including 

activation functions: identity, logistic, tanh, and 

ReLU. The datasets used for the analysis were 

gathered directly from the firewall system under 

real working conditions. 

 
3.1. Network Model for Attack Analysis and 

Detection 

A network, as shown in Figure 5, was used to 

demonstrate how machine learning affects the 

operation of the firewall system and how it 

improves performance in terms of better detection 

and blocking capabilities. 
 

Figure 5: Layout of the analysis grid. 

Figure 5 illustrates an attack on the internal 

zone by two actors. One machine (Attacker2) 

executes the attack directly, while the other control 

(CCC) the attack using BOT functions, engaging 

other users (BOTs) on the Internet to participate in 

the attack. The entire attack is executed using two 

different methods, ping flood and http flood. A BOT 

function is a software program that automatically 

performs repetitive and targeted tasks. BOT can 

be used for some business tasks but also for 

malicious purposes and could have a severe 

impact on the local network. There are several 

types of BOT attacks [27], which are as follows. 

Credential stuffing is when attackers use stolen 

login credentials to gain access to another 

website. Bots circumvent existing built-in security 

features in web application login forms by 

attempting multiple simultaneous logins from 

various device types and IP addresses. 
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Web/content scraping is when bots download 

content from a website to use it in future attacks. 

A website scraper bot sends a series of HTTP 

GET requests, copies, and saves the information, 

all in seconds. 

DoS and DDoS attacks are carried out with 

networks of Internet-connected machines, such as 

computers or IoT devices. Once the network is 

infected, attackers send remote instructions to 

each bot to overload the server or network, 

causing outages and downtime. 

Brute force password cracking is an attack that 

uses bots to attack and infiltrate protected 

accounts by trying every possible password 

combination or cracking encryption key to gain 

unauthorized access to sensitive data. 

Click fraud occurs when attackers target pay- 

per-click ads to boost the search rankings of a 

webpage through fake clicks. 

This paper explores the use of bots to perform 

DDoS attacks on a local network server. The 

Python-based bot application includes server- and 

client-side code. Server-client communication 

(CCC and bots) typically occurs through port 5555, 

with options for alternative ports. Clients can 

launch two types of attack: http flood and ping 

flood, both implemented in the client-side code 

(see Listing 1). The server commands, outlined in 

Listing 2, determine which attack function is used. 

The attack source comprises the selected function 

and the target IP address. 

 
Listing 1: Client-side code that implements http flood and 

ping flood attacks [23] 
 

def run(self, n): 
run = 0 
#terminate = 0 
if n[3]=="HTTPFLOOD": 

while self._running and attackSet: 
url_attack = 'http://'+n[0]+':'+n[1]+'/' 
u = 

urllib.request.urlopen(url_attack).read() 
time.sleep(int(n[4])) 

 
if n[3]=="PINGFLOOD": 

while self._running: 
if attackSet: 

if run == 0: 
url_attack = 'ping '+n[0]+' -i 

0.0000001 -s 65000 > /dev/null 2>&1' 
pro = 

subprocess.Popen(url_attack, 
stdout=subprocess.PIPE, shell=True, 
preexec_fn=os.setsid) 

run = 1 else: 
if run == 1: 

os.killpg(os.getpgid(pro.pid), 
signal.SIGTERM) 

run = 0 
 break  

 
Listing 2: Server commands controlling client attack 

functions [23] 

 

 

ATTACK_TARGET_HOST = "192.168.0.105" 
ATTACK_TARGET_PORT = "3000" 

# Type of Attacks 
#HTTPFLOOD - Floods the target system with 

GET requests. 
#PINGFLOOD - Floods the target system with 

ICMP echo requests. 
 

ATTACK_TYPE = "PINGFLOOD" 

#Status codes that must be set from the list below. 
# HALT - Stop attacks immediately. 
# LAUNCH - To immediately start the attack. 
# HOLD - Wait for the command. 
# UPDATE - Update Client. 

 ATTACK_CODE = "HALT"  

 

In this paper, three datasets are defined for 

analysis. The first dataset represents the normal 

operation of the firewall system, capturing its 

status during periods without active attacks on 

specific groups or ports. This dataset serves as a 

training set. The second dataset focuses on 

detecting transmission anomalies during an active 

attack, making it the test set. Comparing the 

changes between these two datasets provides 

information on the firewall policies. The third 

dataset captures the data generated after the 

adjusted firewall policies are implemented, 

allowing the accuracy of anomaly detection and 

the effectiveness of the updated policies to be 

evaluated. 

The dataset used for the analysis includes the 

following attributes: 

o destination: specifies the destination 
IP address; 

o interface direction: indicates incoming 
or outgoing traffic; 

o type: identifies whether the session is a 

connection, log, or connection alert; 

o source: displays the source IP address; 
o product: categorizes the session as 

either a threat or access; 

o blade: specifies the firewall component 
involved, such as antivirus, firewall, or 
VPN; 

o source port; 

o destination port; 

o protocol; 

o action: determines whether the session 
is accepted, dropped, detected, or 
prevented. 

The action attribute can take on several values, 

including [1]: 

o allow: allows communication between 
the source and destination addresses. 

o detect: monitors specific traffic that 
bypasses initial detection. 

o deny: blocks traffic between the source 

and destination due to policy 
restrictions and sends information to a 
sender. 
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o drop: blocks traffic between the source 

and destination without notifying the 

sender. This is often preferred for 

blocking potentially malicious traffic. 
o prevent: stops unauthorised or 

malicious traffic targeting the 

destination address. 

Figure 6 presents the network model 

implemented in the Orange software package. 

This model is designed for the application of 

machine learning algorithms, which aligns with the 

focus of this study. The model utilises three 

datasets: no-attack, attack, and defence. The no- 

attack dataset represents the network state when 

no attack is occurring and is used to train the 

model. This dataset contains approximately 

54,500 log instances. Figure 7 illustrates the 

numerical ratio of all three output states. The 

attack dataset represents the state of the network 

during an ongoing attack and is used to evaluate 

the model. This dataset contains approximately 

64,100 log instances. Figure 8 illustrates the 

numerical distribution of all three output states. 

The defence dataset represents the network state 

after the firewall policy has been corrected. It 

serves as an additional analysis to evaluate the 

firewall system's operation, determining whether 

the policy has been applied successfully and 

whether the corrections have been effective. This 

dataset contains approximately 62,800 log 

instances. Figure 9 illustrates the numerical ratio 

of all three output states. 

 

Figure 6: Network model created in the Orange package. 
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Figure 7: Numerical ratio of output states in the no-attack 

dataset. 

 

Figure 8: Numerical ratio of output states in the attack data 

set. 

 

Figure 9: Numerical ratio of output states in the defence 
dataset. 

The initial analysis of the three datasets reveals 

the behaviour of the allow exit function. Figure 10 

shows the total number of all functions. The graph 

highlights an increase in the volume of the packets 

during the attack, followed by an increase in 

discarded packets after the defence is applied. 
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the beta distribution for variable x and the shape 

parameters α and β is given by the following 

equation: 
 

1 
𝑓(𝑥, α, 𝛽) = 

𝐵(α, 𝛽) 
𝑥α–1(1 − 𝑥)β–1 (5) 

 

 
 
 
 
 
 
 

Figure 10: Total packet counts showing increases during the 

attack and defence phases. 

Table 2 presents the percentage ratios for the 

allow, drop, and prevent outputs, calculated 

relative to the total number of output values. It 

shows that as the percentage of allowed packets 

increased from the no-attack dataset to the attack 

dataset, meaning the firewall did not respond 

initially. For smaller attacks, the firewall did not 

register significant concern. However, after 

adjusting the firewall policy, there was a reduction 

in allowed packets and a corresponding increase 

in rejected packets, as illustrated in Figure 11. 

 
Table 2. Percentage ratios of allow, drop, and prevent outputs 

calculated relative to the total number of output values 
 

  allow/all drop/all prevent/all  

no-attack  83%  16.8%  0.034% 
attack 86.9% 13% 0.020% 

 defence 83.8% 15.8% 0.038%  

 

Figure 11: Change in allowed and rejected packets after 

firewall policy adjustment (the value of the Prevent state is 

quite low). 

The first analysis of the neural network, focusing 

on anomaly detection to predict whether an attack 

has occurred, is performed using the distribution 

unit in the Orange application. For this purpose, 

data fitting was applied using the beta distribution. 

The beta distribution is used to model the 

behaviour of random variables constrained to finite 

intervals across various fields. It is defined in the 

interval [0, 1], with two positive parameters, alpha 

(α) and beta (β), which serve as exponents of the 

variable. The probability density function (PDF) of 

A change in several characteristics is observed 

in the TCP and UDP packets, as shown in Figure 

12. The figures indicate values for the Generic 

Routing Encapsulation (GRE) protocol, labelled as 

value 47, and the Internet Control Message 

Protocol (ICMP). However, the values for these 

protocols are negligible. As shown in Figure 12, an 

increase in activity is observed in the UDP ports, 

suggesting additional network activity. To further 

confirm this, Figure 13 shows the increase in the 

number of UDP sessions, indicating a significant 

increase in UDP traffic. Given that static NAT is 

configured in the firewall system, the local IP 

address 10.0.80.20 is assigned to the public IP 

address (not shown for security reasons), where 

specific attacks are made against the public IP 

address. Figure 14 shows multiple connections 

from a single public IP address to the local server 

at 10.0.80.20. 

A more detailed analysis of the number of 

sessions and associated IP addresses was 

conducted using Python programming. The 

analysis covered a 10-minute period. The results 

of this analysis, shown in Figures 15 and 16, 

highlight the findings derived from the Python 

scripts. 
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b) 

Figure 12: Examples of TCP and UDP views a) before and 

b) after the attack. 

 

a) 

 
b) 

Figure 13: Displays of the number of received packets a) 

before and b) after the attack. 

 

Figure 14: Display of connections on the local server. 

Figure 15: Display of the public IP address as destination 

(attack victim). 

 

Figure 16: Display of the public IP address as source 
(attacker). 

 

When examining the events on the incoming 

firewall, it is observed that there is activity 

originating from a specific public IP address 

directed at the public IP address of the server 

exposed to the Internet. The next step is to 

analyze the server using various numerical 

parameters. When Wireshark data are transmitted 

during the ongoing attack, a notable similarity can 

be observed in the number of packets between the 

local IP address and the public IP address on the 

Internet, as shown in Figure 17. 

Detecting a high volume of sessions requires an 

analysis of the use of the protocol to block 

potential attacks on the firewall. Figure 18 reveals 

that the analysis identified the ICMP protocol as 

being used in a ping flood attack. 
 

Figure 17: Number of sessions display between the server 

and the attacker. 

http://www.ijise.net/


ISSN: 1934--9955 www.ijise.net 
Vol-20 Issue-01 Mar 
2025 

 
 
 
  
 
 

Page | 187   

 

 

Figure 18: Display of the server-side protocols. 

With two key variables, the type of attack and 

the IP address from which the attack originates, 

the firewall system can be configured to block the 

attack. The process of setting the policy begins at 

the firewall, where you choose to apply the policy 

between the outside and inside zones. In the first 

step, for the predefined Check Point firewall 

solution, the following parameters must be set: 

o policy name: This attribute does not 

affect the policy's functionality. 

However, when many policies follow the 

"top-down" execution principle (where 

the first named policy is executed first), 

the policy name plays a significant role 

in the execution order. 

o source and destination addresses: 

These fields directly impact the policy's 

functionality. Specifically, sessions 

between the specified IP addresses will 

be blocked, as recorded by the firewall 

device. Care must be taken to avoid 

conflicts with IP addresses from other 

policies, ensuring the proper functioning 

of certain services. 

o protocol settings: The final part of the 

network. Each connection between neurons has 

an associated weight, which is updated during 

training through optimization algorithms. The 

weight value is learned during this process and 

plays an important role in the performance of the 

network. Bias, on the other hand, is a parameter 

that helps the model better understand the data. It 

is added to the weighted sum of inputs in each 

neuron, allowing the network to account for 

discrepancies between the predicted and actual 

outputs. Like weights, biases are also learned 

during the training process and contribute to the 

network's performance optimization. 

Number of neurons: Neural networks can 

consist of multiple layers, having different 

structures, which influencing the model’s ability to 

learn complex functions. Currently, there are no 

definitive recommendations on the optimal 

number or types of hidden layers needed to 

achieve satisfactory results. To evaluate the data 

presented in this study, several models with 

varying numbers of neurons per layer were tested, 

including models with two and three layers. The 

accuracy results for the neural network, using the 

training dataset, are presented in Table 3. 

The best precision was achieved using a two- 

layer neural network with a configuration of 5-3, as 

demonstrated by Čisar in [1], thus confirming the 

effectiveness of the two-layer model. Further 

analysis with a three-layer model showed 

improved precision compared to the two-layer 

model, specifically with a 5-5-4 configuration for 

our data. The structure of the neural network, 

based on the number of neurons per layer, is 

illustrated in Figure 19. 

The parameters of the neural network are 

influenced by the pre-defined algorithms. For the 

dataset used in this study, an accuracy 

comparison was performed with the proposed 

algorithm. The results of this comparison are 

presented in Table 4. 

 
Table 3. Accuracy value related to the number of neurons 

and layers 

policy  defines  which  protocols  are Number of neurons and Accuracy 
involved, whether they should be 

blocked, and whether a log entry should 

be created when the policy is triggered. 

 layers  

3-5 0.940 

 

evaluate the effectiveness of the protection 

mechanism it provides. 

 
3.2 Attack Analysis through Machine Learning 

Algorithms 

In the following sections of the paper, the impact 

of predefined datasets on the neural network will 

be explored, which plays a crucial role in the 

operation of this network. 

 

5-3 0.957 

5-4 0.949 

5-4-3 0.956 

5-5-3 0.960 

5-5-4 0.963 

6-5-4 0.954 

4-5-4 0.946 
4-5-5 0.960 

Weights and Biases: Weights are parameters   

that determine the strength of connections 

between neurons in different layers of the neural 

After explaining the firewall system, this work 4-5 0.945 

will explore the concept of the neural network and 5-5 0.954 
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Figure 19: Structure of the neural network with the number of neurons per layer (5-5-4 configuration). 

 

Table 4 Accuracy comparison for the proposed activation 
functions 

taking prompt action on the firewall features, the 

system returned largely to its initial state. 

Classification Accuracy (CA): CA represents the 

proportion of correctly classified examples related 

to the total number of examples. The formula for 

CA is as follows: 
 

Accuracy= TP+TN 
TP+TN+FP+FN 

(7) 

 

 
In Table 4 we have small deviations in the 

values for the displayed functions. There are 

deviations at the third decimal point, which 

indicates that the final values in the further 

examination will have small cuts in the values, for 

the mentioned functions. Based on the results 

obtained, the next phase of the analysis will focus 

on the ReLU function and the 5-5-4 neural network 

model. After defining the model, along with the 

number of neurons, layers, and algorithms, further 

network tests can be conducted to improve the 

performance of the firewall solution. The following 

characteristics were considered during this 

process. 

Area under the ROC (Receiver Operating 

Characteristic) curve (AUC): The AUC represents 

the area under the ROC curve, which assesses 

the model's ability to distinguish between true 

positives and false positives. Values range from 0 

to 1, where a value of 1 indicates that the model 

perfectly separates the specified classes. The 

AUC is always a positive number and can be 

calculated using the following equation: 

where TP is true positive, TN is true negative, 

FP is false positive, and FN is false negative. 

Table 6 presents the CA values. When comparing 

the test model to the training model, the CA drops 

by 1.24%, as shown in Table 6. Similarly to the 

AUC parameter, there is no return to the initial 

values after intervention in the firewall system. 

F-score (F1): The F-score measures predictive 

performance, particularly when dealing with 

unbalanced datasets. The results are presented in 

Table 7, for the described model. A 1.56% drop 

related to the training model is observed, but the 

values return close to the nominal after the firewall 

intervention. 

Precision: Precision represents the proportion 

of true positive events among the cases classified 

as positive. The results are shown in Table 8. 

Recall: Recall represents the proportion of true 

positive events among all positive instances. The 

results are provided in Table 9. 

The data was recorded in three cycles. The first 

cycle captured characteristics when there was no 

attack on the system. The second cycle recorded 

the state during the attack and was used for 

training. The third cycle, confirmation, recorded 

AUC= 
1 
𝑅𝑂𝐶 (𝑢)𝑑𝑢 

0 
(6) the firewall status after the necessary corrections 

were made. 

 
In this case, in Table 5, an example of weighting 

values for all three cases is given. The average 

values dropped by 4.61% compared to the training 

data. However, after correcting for the firewall 

solution, it almost returned to its initial values. 

Figure 20 shows the ROC curve for the drop value 

in the three datasets. In this figure, the graph 

reveals a decrease in the area of the ROC curve 

during a system attack. These changes ar work 

and models coulde also reflected in Table 5. By 

 
Table 5. AUC values across three dataset scenarios 

 

Target Training Testing Conformation 

Accept 0.977 0.930 0.975 

Detect 1 1 1 

Drop 0.977 0.932 0.977 

Prevent 1 1 1 

Average 0.977 0.932 0.977 

Algorithm AUC CA F1 Precision 

 NN  

Identity 
 

0.950 
 

0.942 
 

0.966 
 

0.935 

Logistic 0.965 0.964 0.979 0.947 

Tanh 0.976 0.964 0.997 0.961 

ReLU 0.977 0.964 0.979 0.963 
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a) 

 
 
 
 
 
 
 
 
 
 

 

 
b) 

 
c) 

Figure 20: Values of the ROC curve for the drop function for 

a) test, b) training, and c) confirmation mode. 

Table 6. CA values for datasets 
 
 
 
 
 
 
 
 
 
 
 

 
Table 7. F-score values showing the impact of firewall 

intervention 

4. COMPARING THE RESULTS FOR OTHER 

FUNCTIONS 

The results showed that by using the ReLU 

function we can optimize the firewall device. Table 

10 shows the results of other functions in neural 

networks for the situation of an attack on the 

system and the Accept functionality option. 

 
Table 10. Values of Accept results for all functions 

 

Target AUC CA F1 Precision Recall 

ReLU 0.930 0.952 0.973 0.957 0.989 

Tanh 0.930 0.946 0.969 0.955 0.983 

Logistic 0.910 0.949 0.971 0.958 0.958 

Identity 0.913 0.936 0.964 0.937 0.994 

 

Suppose the focus is on the values of the CA 

parameters, the parameter that shows the 

correctly classified values. Then it could be 

determined that the ReLU is better than Tanh, 

Logistic and Identity quantified in percentage 

differences of 0%, 0.6% and 1.7% (respectively). 

In Figure 21, it can also be seen that ReLU is 

mostly better for the other parameters, except for 

the Recall parameter. 

 
Noting the value of the Drop in Table 10, for all 

functions, similar conclusions are reached, i.e. 

that ReLU gives better results compared to the 

Tanh, Logistic and Identity functions quantified in 

percentage differences of 0.6%, 0.4% and 0.7%, 

respectively. Defined deviations can also be seen 

Detect 0 0 0 

Drop 0.886 0.791 0.878 

Prevent 1 0.839 1 

Average 0.963 0.949 0.962 

 
Table 8. Precision values for datasets 

Target Training Testing Conformation 

Accept 0.970 0.957 0.968 

Detect 0 0 1 

Drop 0.927 0.908 0.931 

Prevent 1 0.722 1 

Average 0.963 0.950 0.962 

 
Table 9. Recall values for datasets 

Target Training Testing Conformation 

Accept 0.987 0.989 0.988 

Detect 0 0 1 

Drop 0.848 0.701 0.831 

Prevent 1 1 1 

Average 0.964 0.952 0.963 

 

Target Training Testing Conformation 

Accept 0.964 0.952 0.963 

Detect 0.964 0.952 0.963 

Drop 0.964 0.952 0.963 

Prevent 0.964 0.952 0.963 

Average 0.964 0.952 0.963 

 

Target Training Testing Conformation 

Accept 0.978 0.973 0.978 
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in Figure 22. Looking at the CA values in Table 11, we can 

state that there was a drop in correctly classified 

sessions by about 12%. This large value indicates 

that for better detection of malicious sessions, it is 

necessary to use a smaller data set to improve 

accuracy. 

 
 
 
 
 
 
 
 

 
Figure 21: Values of different parameters for activation 

functions 

 
Table 10. Values of Drop results for all functions 

 
 

Target AUC CA F1  Precision Recall 
 

ReLU 0.932 0.952 0.791 0.908 0.701 

Tanh 0.929 0.946 0.768 0.862 0.693 

Logistic 0.910 0.949 0.782 0.782 0.709 

Identity 0.913 0.936 0.692 0.931 0.505 
 

 
Figure 22: Values of defined deviations. 

 

5. COMPARING THE RESULTS WITH A LARGER 

DATASET 

In the paper, the analysis was done with a small 

number of samples, up to 54,500 defined 

sessions. The values of some parameters are 

quite high. Table 11 shows all parameters within 

the ReLU function, but for a data set containing 

1 000 000 sessions. 

 
Table 11. Values for complete data set 

 
 
 
 
 
 
 
 
 
 

 

Due to the very difficult option of comparing two 

data sets whose values are quite different, the 

comparison will be made only according to the 

parameter CA, i.e. according to the parameter of 

correctly classified examples. 

6. CONCLUSION 

This paper demonstrates the application of 

neural networks with the ReLU activation function 

aiming to optimize firewall policies for detection 

and mitigation of network attacks. The proposed 

5-5-4 model achieved the highest accuracy of 

96.3%, surpassing two-layer architectures by 

0.6% and the next-best three-layer architecture by 

0.3%. The analysis, based on real working 

environment datasets, confirmed that this 

approach improves the accuracy of attack 

detection and improves the effectiveness of 

firewall policy adjustments, even in dynamic and 

complex environments. 

During the testing, a decrease in performance 

metrics was observed: The area under the curve 

(AUC) decreased by 4.61%, the classification 

precision (CA) by 1.24%, the F1 score by 1.56%, 

Precision by 1.3%, and recall by 1.2% compared 

to the training values. After applying optimized 

firewall policies, most parameters returned close 

to their initial values, demonstrating the reliability 

of the proposed model in real working scenarios. 

The study used datasets consisting of 

approximately 54,500 instances for training, 

64,100 instances during active attacks, and 

62,800 instances after firewall policy adjustments. 

This ensures the results are based on realistic 

conditions and it validates the practical 

applicability. These findings are particularly 

relevant in environments such as IoT systems, 

where quick detection and prevention of attacks 

are essential to maintain network security. 

Although the results are encouraging, the study 

is limited by the use of a single dataset and 

software platform. Future research should focus 

on evaluating the model's adaptability to larger 

and more diverse datasets (IoT) and exploring its 

integration into broader cybersecurity frameworks 

to enhance scalability and applicability. 

This study confirms the potential of machine 

learning, particularly neural networks, as an 

effective tool for improving network security. The 

proposed approach provides a solid foundation for 

further research and development aimed at 

creating more adaptive and robust cybersecurity 

solutions for increasingly complex and 

interconnected systems. 

1 
 

 
0,5 
 

 
0 

  F1 Precision Recall 

ReLU Tanh Logistic Identity 

1,05 

1 

0,95 

0,9 

0,85 
 
 
 

 
ReLU Tanh Logistic Identity 

Target AUC CA F1 Precision Recall 

Accept 0.809 0.837 0.896 0.820 0.987 

Detect 1.000 0.837 0.782 0.642 1.000 

Drop 0.998 0.837 0.997 1.000 0.993 

Prevent 0.967 0.837 0.000 0.000 0.000 

Reject 0.753 0.837 0.357 0.834 0.227 
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